MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3
نویسندگان
چکیده
Pancreatic ductal adenocarcinoma (PDAC), which accounts for 96% of all pancreatic cancer cases, is characterized by rapid progression, invasion and metastasis. Transforming growth factor-beta (TGF-β) signaling is an essential pathway in metastatic progression and microRNAs (miRNA) play central roles in the regulation of various biological and pathologic processes including cancer metastasis. However, the molecular mechanisms involved in regulation of miRNAs and activation of TGF-β signaling in PDAC remain to be established. The results of this study suggested that miR-323-3p expression in PDAC tissues and cell lines was significantly decreased compared to levels in normal pancreatic tissues and primary cultured pancreatic duct epithelial cells. Further investigation revealed that miR-323-3p directly targeted and suppressed SMAD2 and SMAD3, both key components in TGF-β signaling. Lower levels of miR-323-3p predicted poorer prognosis in patients with PDAC. Ectopic overexpression of miR-323-3p significantly inhibited, while silencing of miR-323-3p increased the migration and invasion abilities of PDAC cells in vitro. Moreover, using an in vivo mouse model, we demonstrated that overexpressing of miR-323-3p significantly reduced, while knockdown of miR-323-3p enhanced lung metastatic colonization of PANC-1 cells. Furthermore, miR-323-3p-induced TGF-b signaling inhibition and cell motility suppression were partially rescued by overexpressing of Smad2 and Smad3 in PDAC cells. Our findings suggest that re-expression of miR-323-3p might offer a novel therapeutic target against metastasis in patients with PDAC.
منابع مشابه
Rac1b negatively regulates TGF-β1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signalling
Transforming growth factor (TGF)-β1 promotes progression of pancreatic ductal adenocarcinoma (PDAC) by enhancing epithelial-mesenchymal transition, cell migration/invasion, and metastasis, in part by cooperating with the small GTPase Rac1. Prompted by the observation of higher expression of Rac1b, an alternatively spliced Rac1 isoform, in pancreatic ductal epithelial cells and in patients with ...
متن کاملMicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4
BACKGROUND Aim to determine the clinicopathological and prognostic role of miR-301a-3p in pancreatic ductal adenocarcinoma(PDAC), to investigate the biological mechanism of miR-301a-3p in vitro and in vivo. METHODS By tissue microarray analysis, we studied miR-301a-3p expression in PDAC patients and its clinicopathological correlations as well as prognostic significance. qRT-PCR was used to t...
متن کاملAB174. Clinical analysis of transurethral end-fire greenlight PVRP-ST for the treatment of elderly and high-risk patients with
© Translational Andrology and Urology. All rights reserved. Transl Androl Urol, 2016;5(S1) tau.amegroups.com and 3D invasion assays and mice experiment. Results: we found TR4 could promote PCa cell invasion using two different cell invasion assays. Mechanism dissection revealed that TR4 might enhance PCa cell invasion via modulation of the microRNA-373-3p (miR-373-3p) expression. An interruptio...
متن کاملThe microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster
We analysed the RNA sequence-based microRNA (miRNA) signature of pancreatic ductal adenocarcinoma (PDAC). Aberrantly expressed miRNAs were successfully identified in this signature. Using the PDAC signature, we focused on 4 clustered miRNAs, miR-216a-5p, miR-216a-3p, miR-216b-5p and miR-216b-3p on human chromosome 2p16.1. All members of the miR-216 cluster were significantly reduced in PDAC spe...
متن کاملMicroRNA-153 is a prognostic marker and inhibits cell migration and invasion by targeting SNAI1 in human pancreatic ductal adenocarcinoma
Human pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer type with early metastasis, which leads to poor prognosis for patients. Mounting evidence suggests that microRNAs (miRNAs) act as critical factors for tumor recurrence and metastasis. miR-153 has been suggested as a novel tumor-associated miRNA, which is involved in tumor metastasis. However, the clinical significance of miR-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016